UNIVERSIDAD NACIONAL DEL CALLAO
FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

INSTITUTO DE INVESTIGACIÓN DE LA FACULTAD DE
INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

TEXTO: TERMODINÁMICA PRÁCTICA
Informe final del proyecto de investigación elaborado por el Ing. Teodoro Rodolfo Rosel Gallegos, Docente Investigador de la FIEE-UNAC.

- Periodo de ejecución del 01/04/2011 al 31/03/2012

CALLAO – LIMA – PERÚ
2012

PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2.5 Perú. Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en DIRECCION CDCITRA Universidad Nacional del Callao | Teléfono: +01 4651822.
ÍNDICE

ESTRUCTURA LINEAL DEL SÍLABO .. 2
INTRODUCCIÓN .. 5

CAPÍTULO I:
SISTEMA INTERNACIONAL DE UNIDADES (SI) 8
RESUMEN ... 8
APLICACIONES ... 11

CAPÍTULO II:
SUSTANCIA PURA .. 19
RESUMEN ... 19
APLICACIONES ... 21

CAPÍTULO III:
EL GAS IDEAL .. 33
RESUMEN ... 33
APLICACIONES ... 35

CAPÍTULO IV:
TRABAJO – CALOR TRABAJO .. 45
RESUMEN ... 45
APLICACIONES ... 47

CAPÍTULO V:
PRIMERA LEY DE LA TERMODINÁMICA 61
RESUMEN ... 61
APLICACIONES ... 65

CAPÍTULO VI:
INTRODUCCIÓN A LA SEGUNDA LEY DE LA TERMODINÁMICA 82
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII</td>
<td>Entropía</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Resumen</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Aplicaciones</td>
<td>104</td>
</tr>
<tr>
<td>VIII</td>
<td>Ciclos de Potencia</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Resumen</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Aplicaciones</td>
<td>121</td>
</tr>
<tr>
<td>IX</td>
<td>Ciclo Joule Brayton</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Resumen</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Aplicaciones</td>
<td>135</td>
</tr>
<tr>
<td>X</td>
<td>Ciclo de Máquinas de Combustión Interna</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Ciclo Otto – Ciclo Diesel</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Resumen</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Aplicaciones</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Referencias Bibliografías</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Anexos</td>
<td>167</td>
</tr>
</tbody>
</table>
CAPÍTULO I
SISTEMA INTERNACIONAL DE UNIDADES (SI)

RESUMEN

El propósito de utilizar un determinado sistema de unidades, es el de fijar valores numéricos específicos a fenómenos físicos que son observables, de manera que estos fenómenos puedan describirse en forma analítica.

Para definir en forma correcta una propiedad física se deberá expresarla en términos de algún conjunto de unidades. El Sistema Internacional de Unidades (SI) se adoptó en la década de los 60, en la XI Conferencia Internacional General de Pesas y Medidas. A partir de 1995 casi todos los países, a excepción de Estados Unidos utilizan este nuevo sistema de unidades, con la probabilidad que dentro de algunos años sea adoptado por el país del norte del continente sudamericano.

Este nuevo sistema de unidades facilita muchos cálculos, ya que ofrece ventajas sobre otros sistemas de unidades, por utilizar un menor número de factores de conversión y por la simplicidad en el uso de una escala de unidades que se requieren para describir una cantidad debida por el uso de la base decimal que utiliza el sistema.

El sistema SI de unidades utiliza siete dimensiones y unidades fundamentales adicionalmente se complementan con dos dimensiones y unidades denominadas fundamentales complementarias. Como consecuencia de las unidades fundamentales se obtienen las dimensiones y unidades derivadas.

Dependiendo de los valores para una determinada dimensión es muy frecuente hacer uso de términos que expresan múltiplos o submúltiplos de una dimensión, a estos se les denomina prefijos que están relacionados con potencias de 10 y que se anteponen al símbolo de una unidad.